Recurrent Markov Cluster (RMCL) Algorithm for the Refinement of the Semantic Network
نویسندگان
چکیده
The purpose of this work is to propose a new methodology to ameliorate the Markov Cluster (MCL) Algorithm that is well known as an efficient way of graph clustering (Van Dongen, 2000). The MCL when applied to a graph of word associations has the effect of producing concept areas in which words are grouped into the similar topics or similar meanings as paradigms. However, since a word is determined to belong to only one cluster that represents a concept, Markov clusters cannot show the polysemy or semantic indetermination among the properties of natural language. Our Recurrent MCL (RMCL) allows us to create a virtual adjacency relationship among the Markov hard clusters and produce a downsized and intrinsically informative semantic network of word association data. We applied one of the RMCL algorithms (Stepping-stone type) to a Japanese associative concept dictionary and obtained a satisfactory level of performance in refining the semantic network generated from MCL.
منابع مشابه
Building a clustered semantic network for an Entire Large Dictionary of Japanese
In this paper, we develop a new method of solving the cluster-size imbalance problem observed when documents and corpora are processed with the Markov Clustering (MCL) Algorithm (Van Dongen, 2000), which is widely recognized as an efficient approach to graph clustering. The Branching MCL (BMCL) and its variant, Reverse Branching MCL (RBMCL) can resize overly inclusive Markov clusters (core clus...
متن کاملCluster Based Cross Layer Intelligent Service Discovery for Mobile Ad-Hoc Networks
The ability to discover services in Mobile Ad hoc Network (MANET) is a major prerequisite. Cluster basedcross layer intelligent service discovery for MANET (CBISD) is cluster based architecture, caching ofsemantic details of services and intelligent forwarding using network layer mechanisms. The cluster basedarchitecture using semantic knowledge provides scalability and accuracy. Also, the mini...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملAnalysis of User query refinement behavior based on semantic features: user log analysis of Ganj database (IranDoc)
Background and Aim: Information systems cannot be well designed or developed without a clear understanding of needs of users, manner of their information seeking and evaluating. This research has been designed to analyze the Ganj (Iranian research institute of science and technology database) users’ query refinement behaviors via log analysis. Methods: The method of this research is log anal...
متن کاملMarkov Chain Anticipation for the Online Traveling Salesman Problem by Simulated Annealing Algorithm
The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006